Propionic Acidemia (PA):\textit{PCCA} and \textit{PCCB} Gene Deletion/Duplication

<table>
<thead>
<tr>
<th>Test Code:</th>
<th>KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnaround time:</td>
<td>2 weeks</td>
</tr>
<tr>
<td>CPT Codes:</td>
<td>81228 x1, 81405 x1</td>
</tr>
</tbody>
</table>

Condition Description

Propionic acidemia (PA) is an autosomal recessive disorder of organic acid metabolism caused by a defect of propionyl-CoA carboxylase (PCC) \[1\]. PCC catalyzes the carboxylation of propionyl-CoA to D-methylmalonyl-CoA in the catabolic pathway of odd-numbered carbon fatty acids and amino acids, i.e. isoleucine, valine, threonine, and methionine. The major biochemical features of PA include:

- mild to severe ketoacidosis
- hyperammonemia
- hyperglycinemia
- diagnostic urine organic acid profile (3-hydroxypropionate, methylcitrate, propionylglycine, and tiglylglycine)\[2\]

The common clinical presentation includes:

- frequent vomiting
- lethargy
- refusal to feed
- hypotonia

In most patients there is a neonatal clinical onset associated with development delay and neurological impairment, but late-onset patients are also described with a milder course \[3\].

Conventional treatment of PA consists of dietary restriction of protein, increase of caloric intake, avoidance of long-fasting periods and carnitine supplementation, and may include oral antibiotic therapy.

PCC is a biotin-dependent mitochondrial enzyme which consists of two non-identical alpha and beta-subunits, encoded by the \textit{PCCA} (13q32) and \textit{PCCB} (3q13) genes, respectively \[4\]. Mutations in either the \textit{PCCA} or \textit{PCCB} genes can cause reduced or deficient enzyme activity. In both genes, missense mutations are the most frequent defects (39 and 46\%, for \textit{PCCA} and \textit{PCCB}, respectively), followed by small insertions/deletions and splicing mutations (24-29\% each in either gene), with most resulting in a truncated protein. Gene sequencing is available to test for mutations in the \textit{PCCA} and \textit{PCCB} genes. For patients with mutations not identified by full gene sequencing, a separate deletion/duplication assay is available using a targeted CGH array.

References

Genes

\textit{PCCA, PCCB}

Indications

This test is indicated for:

- Confirmation of a clinical/biochemical diagnosis of PA.
- Carrier testing in adults with a family history of PA.

Methodology

DNA isolated from peripheral blood is hybridized to a CGH array to detect deletions and duplications. The targeted CGH array has overlapping probes which cover the entire genomic region.

Detection
Detection is limited to duplications and deletions. The CGH array will not detect point or intronic mutations.

Results of molecular analysis must be interpreted in the context of the patient’s clinical and/or biochemical phenotype.

Specimen Requirements

Submit only 1 of the following specimen types

Type: DNA, Isolated

Specimen Requirements:
- Microtainer
- 3µg
- Isolation using the Perkin Elmer™Chemagen™ Automated Extraction method or Qiagen™ Puregene kit for DNA extraction is recommended.

Specimen Collection and Shipping:
- Refrigerate until time of shipment in 100 ng/µL in TE buffer. Ship sample at room temperature with overnight delivery.

Type: Whole Blood (EDTA)

Specimen Requirements:
- EDTA (Purple Top)
- Infants and Young Children (2 years of age to 10 years old): 3-5 ml
- Older Children & Adults: 5-10 ml
- Autopsy: 2-3 ml unclotted cord or cardiac blood

Specimen Collection and Shipping:
- Ship sample at room temperature for receipt at EGL within 72 hours of collection. Do not freeze.

Special Instructions

Please submit copies of diagnostic biochemical test results along with the sample. Sequence analysis is required before deletion/duplication analysis by targeted CGH array. If sequencing is performed outside of EGL Genetics, please submit a copy of the sequencing report with the test requisition.

Related Tests

- *Amino Acid Analysis - Plasma (AA)*, *Urine Organic Acids (OA)*, and *Acylcarnitine Profile - Plasma (AR)* are used in the diagnoses of a patient with PA.
- Prenatal testing is available to couples who are confirmed carriers of mutations. Please contact the laboratory genetic counselor to discuss appropriate testing prior to collecting a prenatal specimen.