Fragile X: **FMR1** Gene Deletion/Duplication

Test Code: KQ
Turnaround time: 2 weeks
CPT Codes: 81228 x1

Condition Description

Expansion of a CGG triplet repeat leading to DNA methylation and silencing of the **FMR1** gene is the most frequent cause of Fragile X syndrome. However, other mutations within the **FMR1** gene have also been identified that cause Fragile X syndrome. These include deletions, point mutations that disrupt RNA splicing, and a missense mutation. EGL Genetics offers full gene sequencing to detect mutations other than CGG expansion as a cause of Fragile X syndrome.

Sequencing of the **FMR1** gene will only be done if the patient first tests negative for expansion of the CGG tract and **FMR1** DNA methylation. The **FMR1** gene consists of 17 exons. These coding exons, as well as the immediate flanking regions, are PCR amplified and sequenced in both forward and reverse strands. In addition, the entire **FMR1** promoter, including the four known transcription factor binding sites and the transcription initiation site, are assessed by DNA sequencing. This analysis will therefore detect coding sequence changes, splice donor and acceptor site mutations, and changes in the promoter sequence. In addition, both small and large deletions will be detected in males. Small deletions will also be detected in females, although larger deletions of the entire gene potentially could escape detection.

It is important to note that testing for expansion of the CGG tract and **FMR1** DNA methylation alone does not rule out a diagnosis of Fragile X syndrome or involvement of **FMR1** in the patient's phenotype. Specialized consultation is available with Dr. Stephen Warren, an authority on **FMR1**, on the interpretation of missense mutations.

Please [click here](#) for the GeneReviews summary on this condition.

Genes

FMR1

Indications

This test is indicated for:

- Confirmation of a clinical diagnosis of fragile X syndrome who have tested negative by CGG repeat analysis as well as sequencing of the **FMR1** gene.
- Carrier testing in adults with a family history of fragile X syndrome who have tested negative by CGG repeat analysis as well as sequencing of the **FMR1** gene.

Methodology

DNA isolated from peripheral blood is hybridized to a CGH array to detect deletions and duplications. The targeted CGH array has overlapping probes which cover the entire genomic region.

Detection

Detection is limited to duplications and deletions. The CGH array will not detect point or intronic mutations.

Results of molecular analysis must be interpreted in the context of the patient's clinical and/or biochemical phenotype.

Specimen Requirements

Submit only 1 of the following specimen types

Type: Whole Blood (EDTA)

Specimen Requirements:
EDTA (Purple Top)
Infants and Young Children (2 years of age to 10 years old): 3-5 ml
Older Children & Adults: 5-10 ml
Autopsy: 2-3 ml unclotted cord or cardiac blood

Specimen Collection and Shipping:
Ship sample at room temperature for receipt at EGL within 24 hours of collection. Do not refrigerate or freeze.

Type: DNA, Isolated

Specimen Requirements:
Microtainer
Isolation using the Perkin Elmer™ Chemagen™ Automated Extraction method or Qiagen™ Puregene kit for DNA extraction is recommended.

Specimen Collection and Shipping:
Refrigerate until time of shipment in 100 ng/µL in TE buffer. Ship sample at room temperature with overnight delivery.

Special Instructions

Please submit copies of diagnostic biochemical test results along with the sample. Contact the laboratory if further information is needed. Sequence analysis is required before deletion/duplication analysis by targeted CGH array. If sequencing is performed outside of EGL Genetics, please submit a copy of the sequencing report with the test requisition.

Related Tests

- For Fragile X testing, CGG repeat analysis is the recommended first tier test. Sequencing and deletion/duplication analysis are also available and should follow CGG repeat analysis.