X-linked Intellectual Disability: Sequencing Panel

Condition Description

 Intellectual disability (ID) is a nonprogressive cognitive impairment affecting 1-3% of the Western population. It is estimated that up to 50% of moderate-severe cases have genetic causes and approximately 10% are due to X-linked intellectual disability disorders (XLID). XLID can be syndromic or nonsyndromic and is observed in all ethnic groups. More than 100 XLID syndromes have been described in the literature to date. Fragile X is the most common XLID syndrome (~1 in 4000 males) while others can be quite rare with only a few patients reported in the literature. Males can have moderate to severe intellectual disability depending on a syndrome, and carrier females can also be affected, but typically have milder clinical symptoms.

A majority of individuals with XLID are non-syndromic with no other features to assist in diagnosis. Because of the number of genes involved, it is very difficult to identify which X-linked gene may be responsible for the phenotype in any given patient. Simultaneous testing of all known XLID genes in a single study provides a significant diagnostic advantage over single gene sequencing. Additional benefits for the patient and families include:

- Providing information for recurrence risk and family planning and allowing for presymptomatic support
- Helping physicians determine appropriate follow-up testing and develop a health maintenance plan
- Predicting better patient prognostic value
- Assisting researchers in the understanding of the molecular basis of disease in the hope for treatments and cures
- Assessing the possibility of therapy for some forms of XLID

Testing includes trinucleotide repeat analysis for the FMR1 (test code: MFRA2) and AFF2/FMR2 (test code: FRAXE) genes.

Genes

ACS14, AFF2, AP1S2, ARHGEF9, ARX, ATP6AP2, ATP7A, ATRX, BCOR, BRWD3, CASK, CCDC22, CDD16, CDKL5, CLIC2, CNKSR2, CUL4B, DCX, DKK1, DPG1, DMD, FANC, FDG1, FLNA, FMR1, FRMD4, FTSJ1, GDI1, GKI, GRP3, GRIAS, HCCS, HCFC1, HPRT1, HSD17B10, HUWE1, IDS, IGBP1, IL1RAPL1, IQSEC2, KDM5C, KIAA0222, KLF8, L1CAM, LAMP2, MAAO, MBTSP2, MECPP, MED12, MID1, NAA10, NDP, NDUFA1, NHS, NGLN3, NGLN4X, NSDHL, OCR1, QDF1, QPHN1, QTO, PAK3, PCDH19, PHD1A, PKGI, PHF5, PHF8, PLP1, PORCN, PGP1, PRPS1, PTPD1, RA83B, RBM10, RPL10, RPSKEK3, SHROOM4, SLC16A2, SLC9A6, SMC1A, SMS, SOX3, SYN1, SYNGAP1, SYP, TIMM8A, TSPAN7, UBE2A, UF13B, ZDHHC15, ZDHHC9, ZNF711

Indications

This test is indicated for:

- Individuals with a clinical and family history consistent with an X-linked intellectual disability disorder after fragile X testing and genomic array testing are normal.
- Carrier testing in adult females with a family history of X-linked intellectual disability.

Methodology

Next Generation Sequencing: In-solution hybridization of all coding exons is performed on the patient’s genomic DNA. Although some deep intronic regions may also be analyzed, this assay is not meant to interrogate most promoter regions, deep intronic regions, or other regulatory elements. Direct sequencing of the captured regions is performed using next generation sequencing. The patient’s gene sequences are then compared to a standard reference sequence. Potentially causative variants and areas of low coverage are Sanger-sequenced. Sequence variations are classified as pathogenic, likely pathogenic, benign, likely benign, or variants of unknown significance. Variants of unknown significance may require further studies of the patient and/or family members.

Detection

Next Generation Sequencing: Clinical Sensitivity: Unknown. Mutations in the promoter region, some mutations in the introns and other regulatory element mutations cannot be detected by this analysis. Large deletions/duplications will not be detected by this analysis. Results of molecular analysis should be interpreted in the context of the patient’s clinical/biochemical phenotype.

Analytical Sensitivity: ~99%.

MFRA2: Normal: Approximately 5-44 CGG repeats.
Intermediate: Approximately 54-55 unmethylated CGG repeats.
Premutation: Approximately 55-200 CGG repeats and methylation of expanded allele.
Affected: Over 200 CGG repeats and methylation of expanded allele.

Reference Range

Disclaimer: This information is confidential and subject to change without notice. It may not be reproduced in whole or part unless authorized in writing by an authorized EGL representative.
Next Generation Sequencing: N/A.

MFRAX:
Normal: Approximately 5-44 CGG repeats.
Intermediate: Approximately 54-45 unmethylated CGG repeats.
Premutation: Approximately 55-200 CGG repeats and methylation of expanded allele.
Affected: Over 200 CGG repeats and methylation of expanded allele.

Specimen Requirements

Submit only 1 of the following specimen types

* Preferred specimen type: Whole Blood

Type: Whole Blood

Specimen Requirements:

In EDTA (purple top) or ACD (yellow top) tube:
- Infants (2 years): 3-5 ml
- Older Children & Adults: 5-10 ml.

Specimen Collection and Shipping: Refrigerate until time of shipment. Ship sample within 5 days of collection at room temperature with overnight delivery.

Type: Isolated DNA

Specimen Requirements:

In microtainer: 60 ug

Isolation using the Qiagen™ Puregene kit for DNA extraction is recommended.

Specimen Collection and Shipping: Refrigerate until time of shipment in 100 ng/ul of TE buffer. Ship sample at room temperature with overnight delivery.

Related Tests

- The Autism Panel is available to detect the most common known genetic causes of autism/ID. The autism panel includes testing for fragile X syndrome and chromosome microarray analysis (using oligonucleotide array) and is recommended before XLID gene sequencing panel testing.
- Testing is also available for individual XLID genes that have specific phenotypes.
- Prenatal testing is available for couples who are confirmed carriers of mutations. Please contact the laboratory genetic counselor to discuss appropriate testing prior to collecting a prenatal specimen.
- X-linked Intellectual Disability: Deletion/Duplication Panel.